Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Food Biochem ; 46(10): e14262, 2022 10.
Article in English | MEDLINE | ID: covidwho-1922970

ABSTRACT

SARS-CoV-2 has been responsible for causing 6,218,308 deaths globally till date and has garnered worldwide attention. The lack of effective preventive and therapeutic drugs against SARS-CoV-2 has further worsened the scenario and has bolstered research in the area. The N-terminal and C-terminal RNA binding domains (NTD and CTD) of SARS-CoV-2 nucleocapsid protein represent attractive therapeutic drug targets. Naturally occurring compounds are an excellent source of novel drug candidates due to their structural diversity and safety. Ten major bioactive compounds were identified in ethanolic extract (s) of Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare, and Petroselinum crispum using HPLC and their cytotoxic potential was determined against cancer and normal cell lines by MTT assay to ascertain their biological activity in vitro. To evaluate their antiviral potential, the binding efficacy to NTD and CTD of SARS-CoV-2 nucleocapsid protein was determined using in silico biology tools. In silico assessment of the phytocomponents revealed that most of the phytoconstituents displayed a druglike character with no predicted toxicity. Binding affinities were in the order apigenin > catechin > apiin toward SARS-CoV-2 nucleocapsid NTD. Toward nucleocapsid CTD, the affinity decreased as apigenin > cinnamic acid > catechin. Remdesivir displayed lesser affinity with NTD and CTD of SARS-CoV-2 nucleocapsid proteins than any of the studied phytoconstituents. Molecular dynamics (MD) simulation results revealed that throughout the 100 ns simulation, SARS-CoV-2 nucleocapsid protein NTD-apigenin complex displayed greater stability than SARS-CoV-2 nucleocapsid protein NTD-cinnamic acid complex. Hence, apigenin, catechin, apiin and cinnamic acid might prove as effective prophylactic and therapeutic candidates against SARS-CoV-2, if examined further in vitro and in vivo. PRACTICAL APPLICATIONS: Ten major bioactive compounds were identified in the extract(s) of four medicinally important plants viz. Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare and Petroselinum crispum using HPLC and their biological activity was also evaluated against cancer and normal cell lines. Interestingly, while all extract(s) wielded significant cytotoxicity against cancer cells, no significant toxicity was found against normal cells. The outcome of the results prompted evaluation of the antiviral potential of the ten bioactive compounds using in silico biology tools. The present study emphasizes on the application of computational approaches to understand the binding interaction and efficacy of the ten bioactive compounds from the above plants with SARS-CoV-2 nucleocapsid protein N-terminal and C-terminal RNA binding domains in preventing and/or treating COVID-19 using in silico tools. Druglikeness and toxicity profiles of the compounds were carried out to check the therapeutic application of the components. Additionally, molecular dynamics (MD) simulation was performed to check the stability of ligand-protein complexes. The results provided useful insights into the structural binding interaction(s) that can be exploited for the further development of potential antiviral agents targeting SARS-CoV-2 especially since no specific therapy is still available to combat the rapidly evolving virus and the existing treatment is more or less symptomatic which makes search for novel antiviral agents all the more necessary and crucial.


Subject(s)
COVID-19 Drug Treatment , Catechin , Laurus , Origanum , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Apigenin , Cinnamates , Cinnamomum zeylanicum/metabolism , Dietary Supplements , Laurus/metabolism , Ligands , Petroselinum/metabolism , SARS-CoV-2
2.
J Food Biochem ; 45(6): e13750, 2021 06.
Article in English | MEDLINE | ID: covidwho-1218148

ABSTRACT

Nutraceuticals need special attention as preventive molecules to create a natural barrier against various dreadful diseases like cancer and to regulate metabolism. In the present study, two spices, Trachyspermum ammi and Cinnamomum verum, been identified as excellent Protein Tyrosine Phosphatases (PTPases) sources that play significant role in the regulation of cell signal transduction and developmental processes in plants as well as animals, being lucrative and potential targets for pharmacological modulation. PTPases from both cases were partially purified into 0%-40% and 40%-80% fractions based on ammonium sulfate saturation levels. Fraction (40%-80%) exhibited a purification level of 4.44-fold and 2.86-fold with specific activity of 44.06 and 23.33 U/mg for PTPases from T. ammi and C. verum, respectively. PTPases being found to be thermally stable up to 70°C imply their industrial significance. Kinetic studies showed Km values to be 7.14 and 8.33 mM, whereas the activation energy (Ea ) values were 25.89 and 29.13 kJ/mol, respectively. Divalent cations: Cu2+ , Zn2+ , and Mn2+ acted as inhibitors of PTPases, from both sources. The Ki values of inhibitors varied from 0.014-0.125 mM in the descending order Cu2+  > Zn2+  > Mn2+ and Mn2+  > Cu2+  > Zn2+ for PTPases from T. ammi and C. verum, respectively. The inhibitory effect of sodium metavanadate aligns with prominent PTPase characteristics. In addition to these properties, the thermostability of PTPases from two spices enhances their significance in industries with therapeutically vital products. Although the source of PTPases is culinary spices, further studies are required to establish the utilization of PTPases as nutraceuticals and in therapeutic formulations. PRACTICAL APPLICATIONS: For a healthy lifestyle, awareness needs to be created by humankind towards food habits to minimize illnesses. Numerous studies have explored the consumption of nutraceutical products acts as a natural barrier and immune booster for various human ailments including SARS-COV-2. PTPases play important roles in regulating intracellular signaling and, ultimately, biological function along with their structural features. The importance of PTPases and their inhibitors has been implicated in various diseases like cancer, diabetes, and obesity. Further investigations need to be undertaken to explore the therapeutic properties of PTPases in both in vivo and in vitro for their clinical significance.


Subject(s)
Ammi , COVID-19 , Ammi/metabolism , Animals , Cinnamomum zeylanicum/metabolism , Dietary Supplements , Humans , Kinetics , Protein Tyrosine Phosphatases/metabolism , SARS-CoV-2 , Spices
SELECTION OF CITATIONS
SEARCH DETAIL